Tag: Phones

Initial Developer Documentation for the Librem 5 Phone Platform

At Purism, we are just as excited as you are about the the development boards that will be distributed this summer. Once a person receives their development board, their first thought will be “This is great! Now, what do I do with it?” In anticipation of the technical guidance that will be needed, the developer documentation effort has begun. You can already see the current state of the documentation at developer.puri.sm

Goal of the Docs

The developer documentation is there as a guide for getting a new developer setup and ready to start having fun! This will include plenty of examples that will help you along towards whatever your goal with the development board may be.

There will be technical step-by-step instructions that are suitable for both newbies and experienced Debian developers alike. The goal of the docs is to openly welcome you and light your path along the way with examples and links to external documentation. These examples will aid you from the start of unpacking your development board to building and deploying flatpak applications to it—and eventually including your package into PureOS. Included, you can expect examples on how to use certain tools like flatpak, the IDEs used to build flatpak applications, and UI tools to help you design apps. The design of the Librem 5 phone interface will also be outlined in detail to provide insight into the human interface guidelines that will be followed by the core applications. Use the design section to learn about gestures you can expect on the phone. Apps you design or port to the board can use these gestures too!

Please note that the docs are not a complete tutorial on how to use all of the development tools required. There are existing documentations available for each specific tool so there’s no need to reinvent the wheel. Instead, you will be directed to those locations online so you can research further on a specific tool.

We welcome all test and development efforts that volunteers have to give, so there will also be information on volunteering and how to become a Purism community member in general.

Work in progress

The documentation is in a constant state of flux. Content is being added daily and reorganization still occurs from time-to-time. If you no longer see a page there, just search for it because chances are it has been moved to somewhere else within the site instead of removed. The aim is to write documentation that is helpful and intuitive so it is important that an intuitive path is laid out. This developer documentation is still pretty new but is filling out quickly so that you are ready to hit the ground running with your new development board in June!

There will be a separate announcement in the next few weeks on this same blog to call for volunteers so get ready!

Initial Plasma Mobile enablement on Librem 5 i.MX 6 test boards

As many of you know, the Librem 5 phone will work with two options for your desktop environment, a GNOME based phone shell and Plasma Mobile. Working closely with the KDE community, we were able to install, run, and even see mobile network provider service on Plasma Mobile! The purpose of this article is to show the progress that has been made with Plasma Mobile on the current Librem 5 development board. Here, the setup steps and overcome challenges are highlighted.

The Setup

The i.MX 6 board started off running PureOS (which, as you may know, is based on Debian testing) with a running Weston environment. Several KDE and Qt packages were needed for the Plasma Mobile environment and a few packages were not available within PureOS so needed to be built: plasma-phone-components, kpeople-vcard, and plasma-settings. For a complete list of technical steps on how Plasma Mobile was setup on the dev board, see https://developer.puri.sm/PlasmaMobile.html.

Once all of the necessary pieces were in place, running Plasma Mobile was as simple as a single command:

$ kwin_wayland --drm plasma-phone

Overcome Challenge #1: The Evil Display Issue

That is when we discovered that the desktop just wasn’t rendering properly. The prototype phone screen looked like an old TV in-between channels. Also sometimes a KDE wallet pop-up window would appear as well (seen in the picture below).

So troubleshooting hats were donned and gdb dusted off. It was discovered that if the export QT_QPA_PLATFORM=wayland line is commented out of the plasma-phone script, then our display issue went away! But the QT_QPA_PLATFORM variable is needed to set the platform to be Wayland. So then the question became, “why is the graphics driver, etnaviv, not working in Wayland mode?”

It turns out that the missing piece was that the zwp_linux_dmabuf protocol was not yet supported in Plasma. For more information on why zwp_linux_dmabuf is needed for Etnaviv driver, check out this announcement.

There already was an upstream bug report tracking the issue, with patches to kwin and kwayland. Thanks to Fredrik Höglund for his work done on zwp_linux_dmabuf.

We incorporated upstream’s patches into our development build of kwin and kwayland and voilà! We were now able to export the QT_QPA_PLATFORM variable and see a beautiful Plasma display!

Overcome Challenge #2: The Invisible Mouse

It was obvious that the keyboard worked, because it was possible to type the password to log back in from the blue lock screen. The mouse, however, seemed to be nowhere in sight. However, by moving the mouse around (assuming it’s there and just not visible) and clicking, we saw that it was possible to open applications but only by accidentally clicking the right thing.

The issue here is that if the DRM driver doesn’t provide the cursor plane. There is an outstanding bug report on this issue.

In the meantime however, we can work around this by holding Ctrl+Super keys to draw a rotating circle around the mouse cursor position, as you can see in the video below:

This is good enough for our current needs, since ultimately we will receive the missing touch adapter hardware for the dev screen and we would no longer need to use of a traditional mouse pointer.

Overcome Challenge #3: Mobile Network Provider Service

Naturally, the next challenge we attempted was to make a phone call. First, the SIM card needs to be recognized, and the provider information retrieved from the modem. This required additional packages, some of which needed to be built from source. To actually get the Sierra Wireless MC7455 to recognize the SIM card, a PIN needed to be sent, modem brought online, and antennas attached. Then, when Plasma Mobile started, we were able to see the mobile network provider signal strength in the top left corner!

Due to the modem we currently have installed on our i.MX 6 board, phone calls are not supported so we could not fully test that part yet. But don’t worry, the Librem 5 will have a modem capable of actually placing phone calls 😉

One step closer and 9,000 kilometers across

Together with the community, Purism is making progress on the road to supporting Plasma Mobile on the Librem 5. There is still more effort needed and this collaboration with the Plasma community will be working towards the successful deployment of Plasma Mobile on the Librem 5.

From 27th of February to 1st of March, Todd and Nicole visited the Embedded World electronics supplier trade show in Nürnberg (Germany) to meet with potential parts suppliers, especially with representatives from NXP and distributor EBV Elektronik. Furthermore, we had productive meetings with suppliers for WiFi, BlueTooth, and sensors, and also talked to a number of board makers and designers.

This visit and the talks prepared us well for our next trip, this time to Shenzhen, the silicon delta of China. We have made appointments with a number of suppliers that are interested in cooperating with us on the Librem 5 phone project as well as on other hardware projects. We will have an extensive two week meeting marathon in order to narrow down the choice and pinpoint the best suppliers for our project.

Design report #4: symbiotic applications

Purism’s long-term goal has always been to make computers that are as convenient as they are respectful to the people that use them. The Librem products are an ethical platform and therefore should not be discriminating anyone; instead, they are meant to be inclusive of all human beings. In other words, everyone should find in their Librem a convenient and secure platform for their daily usage, and therefore accessibility should also be an important part of our ethical design roadmap.

We are aware that the road is long and that the Librem 5 is a challenging project, so we need some design foundations that favor convenience as much as it can lighten the development effort to get there.

Apps on existing platforms compete for your attention

With today’s smartphones, you usually get a minimal set of functionalities out of the box and go through installing diverse applications for your different needs. Usually those applications are proprietary and are designed around their own unethical business model; hence they compete against each other for your attention and have their own set of features to be used within the scope of the application only.

This can lead to a lot of redundancy and confusion in terms of functionality. A particularly blatant case is communication applications, where we see each application handling their own contacts logic, their own locked down and isolated protocol, and where a ton of applications will implement the same things for the same purpose (making calls and sending messages), with the focus typically being the flashiest application to attract and retain the most users. Let’s illustrate how ridiculous this is, conceptually:

Envisioning a harmonious app ecosystem

In the real, natural world, sustainable ecosystems are made of biological entities interacting together in harmony or symbiosis. This is what makes life possible over the long term.

The digital world of Free/Libre & open-source software, particularly in operating systems, is highly similar to the natural ecosystem. In this world, there is no such thing as isolating off or protecting a technology if you want to be part of the system. Business models and interests are completely different from the world of proprietary software. Best practices favor reuse and integration, improving user experience, reducing technical debt, increasing software quality and lowering development costs, with a “collaborative” system where different applications from different authors are made to work together.

The Purpose is the Feature

The idea behind the PureOS design guidelines is to replace the concept of standalone, independent and feature-competing applications with a concept of small, single-purpose, cross-integrated applications—that would interact between each other to provide a unified experience across the device (and beyond). Those small applications can be seen as “features” of the system. 1 purpose = 1 feature.

Therefore, the Human Interface Guidelines’ main principles regarding “features” development would be :

  • Don’t see applications as independent programs but as “features” that have a single purpose and that interact with each other.
  • One “feature” application is guarantor of the security of the data flow going through it. Only make your “feature” application share data with “trusted” features or networks and in a secure way.
  • Make a “feature” application focused on one single purpose (an email client is not an address book nor a calendar)
  • Make your “feature” application rely on existing features (an email client should rely on the existing address book and the existing calendar “features”)
  • Avoid redundancy. Don’t try to reinvent existing applications. Improve them instead.
  • Setup your “feature” application by default. Make it work out of the box.

Advantages

On the user’s side, the features of the device are easy to spot as they are made available through single-purpose applications displaying an obvious name. For example, the “Call” application is made to make calls, no matter the technology used behind that (e.g. Matrix, phone, voip). The “Messaging” application is used to send instant messages, no matter the technology used behind that (e.g. Matrix, SMS, XMPP). The “Contacts” application is used to manipulate and store the contacts information to be used by the “Call” and “Messaging” applications.

On the developer’s side, applications are as simple as they can be, the use cases are limited, all the logic that is not related to the main purpose of the application is delegated to other programs, which makes the application easier to design, implement and maintain.

Data belongs to the user, not the application

In this collaborative application system, where applications can interact with each other in harmony, data is not limited to the application’s logic anymore. Applications are acting as services, or “data providers”, to each other. Data can flow from one application to the other, from one device to another, from one network to another.

This concept implies the separation between data and functionality where the data belongs to the user only. The application that manipulates it is guarantor of its integrity and security.


Please note: these are guidelines, representing an overall vision. Guidelines are there simply as a way to guide application design, and to suggest best practices for application developers in general. Given that a GNU+Linux distribution like PureOS is an open platform where thousands of applications are available independently (as long as they are freedom-respecting!), you are not obligated to conform to these design guidelines to be able to distribute your application through Debian and PureOS. Furthermore, these design plans represent a broad long-term plan, not necessarily a guarantee of what will be happening “immediately” in the first released version of the platform that ships, your mileage may vary, etc.

Librem 5 puzzle pieces starting to come together—graphics, adaptive applications, docs and SDK

The Librem 5 is a big project. And like a lot of big projects, as you probably know, it can appear overwhelming, until you can break the parts down into logical steps. Like a large puzzle scattered on a table, our team has been organizing and beginning to assemble all the pieces. This is very exciting to progress through the initial daunting scope, accepting the tasks, start working and then… after some time, solutions emerge and almost magically align.

In our previous blog posts we described what we were starting to work on, and these efforts began to prove themselves out significantly during our week-long hackfest where part of our software phone team gathered last week in Siegen, Germany. Read more

Design report #3: designing the UI Shell, part 2

Peter has been quite busy thinking about the most ergonomic mobile gestures and came up with a complete UI shell design. While the last design report was describing the design of the lock screen and the home screen, we will discuss here about navigating within the different features of the shell.

The mock-up on the right describes the main navigation principles. It shows the basic gestures that can be used to navigate through the different features of the shell.

From top to bottom:

  • (N) – Pulls down the full list of notifications.
  • (S) – Pulls down the full list of system settings.
  • (Q) – Reveals the most frequently used settings.
  • (W) – Quick launcher (to quickly access the communication features).
  • (A) – (3 seconds) Reveals the list of running applications.
  • (H) – Navigate back to the home screen.

And below are a few more mockups illustrating additional planned features of the Shell:

  • The multitasking overview screen that is revealed through the gesture (A) shows a carousel of all running apps along with their icons to make them easier to spot and access in a touch.
  • Swiping up from the bottom of the screen, from gesture (H), brings back the home screen
  • The “quick launcher” from gesture (W), in this example, is launching a list of (favorite) contacts for a quick access to the communications features.

An experience for people first, not just “app stores”

Now that we have defined the main features and gestures of the shell, it should be time to take care of the applications’ interfaces next.

If the Librem 5 was “Yet Another Android phone,” I would say “Go! Let’s make a bunch of apps!” But the Librem 5 is not just a regular phone, and Purism is very different from Apple and Google in term of philosophy and business model—they have been focusing on having the “biggest” app stores, selling apps, and mining data… and we don’t do that.

Therefore, before hastily moving forward with designing applications interfaces “like the other platforms”, not only must we study the current state of the mobile industry in term of User Experience, we must also try to think on how to improve it with a user-centric paradigm instead of necessarily app-centric. I think that, in some ways, there are many areas where the Librem 5 can bring greater simplicity, making iOS and Android look over-complicated in comparison. It may sound crazy to say that, but bear with me for a moment, we’ll get back to this later on.

By understanding a few concepts, we can try to define some human interface guidelines that will help getting a better user experience by default. This won’t prevent the phone to remain a highly customizable FLOSS platform—it will just help making the Librem 5’s “out of the box” experience more useful for everyone.

Librem 5 Phone Progress Report

Back from FOSDEM

Being at FOSDEM 2018 was a blast! We received a lot of great feedback about what we have accomplished and what we aim to achieve.  These sorts of constructive critiques from our community are how we grow and thrive so thank you so much for this! It helps us to focus our development. Moreover, I was very impressed by the appreciation that we received from the free software community. I know that relationships between companies, even Social Purpose Corporations—like Purism, and the free software communities are a delicate balance. You need to find a good balance between being transparent, open, and free on one side but also having revenue to sustain the development on the other side. The positive feedback we received at FOSDEM and the appreciation that was expressed for our projects was great to hear.

We are working really hard on making ethical products, based on free/libre and open source software a reality. This is not “just a job” for anybody on the Purism staff, we all love what we do and deeply believe in the good cause we are working so hard to achieve. Your appreciation and feedback is the fuel that drives us to work on it even harder. Thank you so much!

Software Work

As I mentioned before, we have the i.MX 6 QuadPlus test hardware on hand, so here are some photos of our development board actually running something:

On the right, you can see the Nitrogen board with the modem card installed. On the left is our display running a browser displaying the Purism web-page and below it a terminal window in which I started the browser. To put the resolution of the display into perspective I put a Micro SD card on the display:

Click to enlarge

The terminal window is about as big as three Micro SD cards! This makes it very clear that a lot of work has to be put into making applications usable on a high resolution screen and to make them finger friendly since the only input system we have is the touch screen. In the next picture I put an Euro coin on the screen and switched back to text console:

Click to enlarge

Concerning the software, we are working on getting the basic framework to work with the hardware we have at hand. One essential piece is the middleware that handles the mobile modem that deals with making phone calls and sending and receiving SMS text messages. For this we want to bring up oFono since it is also used by KDE Plasma mobile. We have a first success to share:

This is the first SMS sent through oFono from the iMX board and the attached modem to a regular mobile smartphone where the screenshot was taken. So we are on the right track here and have a solution that is starting to work that suits multiple possible systems, like Plasma mobile or a future GNOME/GTK+ based mobile environment.

The SMS was sent with a python script using the native oFono DBus API. First the kernel drivers for the modem had to be enabled followed by running ofonod which autodetects the modem. Next the modem must be enabled and brought online (online-modem). Once this was done sending an SMS was as simple as:

purism@pureos:~/ofono/test$ sudo ./send-sms 07XXXXXXXXX "Sent from my Librem 5 i.MX6 dev board!"

The script itself is very simple and instructive. Simulating the reception of a text message can also be done, with a command such as this one:

purism@pureos:~/ofono/test$ sudo ./receive-smsb 'Sent to my Librem 5 i.MX6 dev board!' LocalSentTime = 2018-02-07T10:26:19+0000 SentTime = 2018-02-07T10:26:19+0000 Sender = +447XXXXXXXXX


The evolution of mobile hardware manufacturing

We are building a phone, so hardware is an important part of the process. In our last blog post we talked a bit about researching hardware manufacturing partners. Since we are not building yet-another Qualcomm SOC based phone, but starting from scratch, we are working to narrow down all the design choices and fabrication partners in the coming months. This additional research phase has everything to do with how the mobile phone hardware market has evolved in the past years and I want to share how this all works with you.

In the early days of smartphones, a common case was that the main CPU was separated from the cellular baseband modem and that the cellular modem would run its own firmware when implementing all of the necessary protocols that operate the radio interface—at first it was GSM, then UMTS (3G) and finally LTE (4G). These protocols and the handling of the radio interface have become so complex that the necessary computational power for handling this as well as the firmware sizes have grown over time. Current 3G/4G modems include a firmware of 60 or more megabytes are becoming more common. It did not take long before storing this firmware became an issue as well as at run time since this requires significant increases of RAM usage.

Smartphones usually have a second CPU core for the main operating system which also runs the phone applications and interacts with the users. This means that your device must have two RAM systems as well, one for the baseband and one for the host CPU. This also means you need two storages for firmware, one for the host CPU and one for the baseband. As you may imagine, getting all of these components working together in a form factor small enough to fit into someone’s hand takes a lot of development and manufacturing resources.

The advent of cheap smartphones

There is extreme pressure about the cost of smartphones. In today’s commodity market, we see simple smartphones starting at prices less than $100 USD.

The introduction of combined chips, with radio baseband plus host CPU on one silicon die inside one chip, massively reduced costs. This allows the host CPU and baseband to share RAM and storage. Since the radio can be made in the same silicon process as the host CPU, and both can be placed in a single chip package, we see substantial cost reduction in the semiconductor manufacturing as well as the cost of manufacturing the device. This saves you from having to use a second large chip for the radio itself, an extra flash chip for its firmware, and possibly an extra RAM chip for its operation. This does not only reduce the Bill of Materials (BOM), but also PCB space, and it enables the creation of even smaller and thinner devices. Today we see many big companies offer these types of combined chipsets—such as Qualcomm, Broadcom, and Mediatek to name a few.

These chips caused a big shift in the mobile baseband modem market. Formerly it was common to find discrete baseband modems on the market that were applicable for mobile battery powered handsets like the one we are developing. But since the rise of the combined chipsets, the need for separated modems has dropped to a level that does not justify their development as much. You can still find modem modules and cards but these modules are usually targeted for M2M (machine to machine) communication with only limited data rates and most of them do not have audio/voice functions. They usually come in pretty large cards, such as the miniPCIe or M.2. For us this means that our choice of separated baseband modems suitable for a phone is narrowed.

What this means for OEM, ODM or Build it Yourself

All of this consolidation has an impact on hardware manufacturers and our choices. Pretty much all current smartphone designs by OEM/ODM manufacturers are based on the combined chipset types; this is all they know and it is where they have expertise. Almost no one is making phones with separated basebands anymore, and the ones who do are not OEMs nor ODMs. The options are further limited by our requirement not to include any proprietary firmware on our host CPU (which we wrote about before): most fabricators are unfamiliar with i.MX 6 or i.MX 8 and do not want to risk a development based on it, which narrows our hardware design and manufacturing partners to a much smaller list.

However, we have some promising partners that we will continue to evaluate, and we are confident that we are going to be able to design and manufacture the Librem 5 as we originally specified. We just wanted to share with you why making this particular hardware is so challenging and why our team is the best one to execute on this design. To continue to discuss with some of the manufacturers and providers, Purism will visit Embedded World, one of the world’s largest embedded electronics trade shows, in Nürnberg (Germany) in the beginning of March. And, as usual, we will continue to keep you updated on our progress!

Good news with our existing evaluation boards

We have been patiently waiting for the i.MX 8M to become available, all according to the forecast timeline from NXP. In the meantime, we have started developing software using the i.MX 6 QuadPlus board from Boundary Devices, specifically the NITROGEN6_MAX (Nit6Qp_MAX) since it is the closest we get to production devices before NXP releases the i.MX 8M. We have a Debian Testing based image running as a testbed on these boards while the PureOS team is preparing to build PureOS for ARM and ARM64 in special.

On these evaluation boards we have all the interfaces that we need for software development:

  1. Wi-Fi
  2. Video input and output
  3. USB for input devices
  4. Serial console and a miniPCIe socket with SIM card connected for attaching a mobile modem
  5. At the moment, we are using a Sierra Wireless MC7455 LTE miniPCIe modem card for development, which uses a Qualcomm MDM9230 baseband modem chip. This card is basically a USB device in a mPCIe form factor, i.e. we do not actually use the PCIe interface.
  6. An extremely nice display to our kits using an HDMI-to-MIPI adapter board. The display is a 5.5″ AMOLED display with full-HD resolution with the native orientation as portrait mode.

This hardware setup allows us to start a lot of the software development work now to ensure our development continues in parallel until we have the i.MX 8M based hardware in hand.

Next on our to-do list: phone calls!

Designing the Mobile Experience with Convergence in Mind

It is always great to have the opportunity to discuss face to face with community members to get the pulse of what their thoughts are and suggestions they might have for the Librem 5 project. As such, I was happy to spend time discussing at length with people attending FOSDEM this week-end. Comments from the many supporters made me realize that there are some points regarding goals and vision, in terms of design for the entire Librem line, that needed to be expanded upon and clarified. Keep in mind that although the vision for our short and long-term design goals for the Librem 5 is becoming increasingly clearer, it is of course still “work in progress” from a design perspective; things are not set in stone and therefore we are listening (and responding) to the community’s feedback.

Convergence, for Purism, is a long-term goal to unify the human experience across different devices.

  • A user interface is made of a layout and interactive elements. Different devices using different input and output technologies will have different requirements for layout and interaction. In this case, our approach will consist in designing “responsive” (adaptative) layouts and interaction patterns that will allow modern apps to adapt themselves to the device that it is running on. We don’t have to port/adapt every single existing desktop app under the sun to achieve that goal though, and our partners in the GNU+Linux community have aligned goals with this direction.
  • That approach of convergence is also about the simplicity of accessing the same data and services between different devices, transparently.
  • Part of our plan for convergence is about helping define some consistent Human Interface Guidelines and optimizing the development tools & documentation, in order to help developers create a great experience across devices.

The implementation of our design involves the use of existing technologies, and the UI+UX design itself is not made with a specific technology in mind. Our design work is an attempt to define a set of Human Interface Guidelines that rely on the Ethical Design manifesto and our requirements for security and privacy. The technical details of its implementation are out of the scope of this design report and should be discussed with the development team.

Designing a Mobile Experience

Over the last two weeks, we have been thinking about general human interaction principles for the Librem 5. Our idea is to define the best possible mobile interaction design principles and combine it with an “optimal” mobile shell experience. While what you will see below is simply a high-level overview of work in progress that may change before final public versions, it is setting the stage, and is a good starting point for our upcoming work, such as the communications features that I’ll soon write about in a separate blog post.

Some Basic Principles


We think that a good mobile experience should define convenience and comfort when using the device. It should take into account the hardware in all its aspects along with the many different use cases. In that regard, it is important to define principles that are adapted to the physical device. One of these principles is that one-handed usage of a phone is frequent, and so our interaction design should take this fact into account.

One should be able to easily access the most important features of the phone when holding it with one hand; it supposes touching the screen with the thumb only. That doesn’t necessarily mean that all the screen surface and features must be accessible by the thumb (given the planned 5.5″ screen size, that would not be physically possible), but that the lower area is preferable to access the most useful phone features by default. Those features would include answering an audio or video call, reviewing notifications, unlocking the phone, accessing the home screen, requesting a search or launching the most frequently used applications.

To remain useful for both right and left-handed persons, the optimal area should favor the bottom half of the screen while also avoiding going too far towards the edges (that may be more difficult to access).


The size of the touch (tap) area is also something to take into account in order to give the user the best precision when interacting with the user interface.

Action targets like links, buttons, sliders and other interactive UI elements should take into consideration a sufficient surface size to be used with comfort and precision.

A First Look at the Shell

Peter K., our lead UI/UX designer, has been working on adapting these basic principles to the overall UI shell experience :


The main navigation happens at the bottom half of the screen, and similarly the majority of the interaction with the Lock Screen would happen in the lower half of the screen. When unlocked, the phone would reveal the Home Screen and show the most frequently used applications (or features) of the phone by default. Some useful widgets may use the remaining space (our example is showing music controls and web search widgets). Swiping up the frequently used applications icons reveals the full list of applications as well as the “main” search field, that is also accessible at the bottom of the screen. Less recurrent gestures, like accessing the settings or the detailed list of notifications, are available in the upper part of the screen.

More to Come

This was a quick appetizer regarding the ongoing design effort. Upcoming work will be about finalizing the shell experience and designing privacy-respecting communication features, so stay tuned!

Librem 5 Phone Progress Report

The Librem 5 and recent industry news

Lately, news headlines have been packed with discussions about critical CPU bugs which are not only found in Intel CPUs, but also partially in AMD CPUs and some ARM cores. At the same time, some of our backers have voiced concerns about the future of NXP in light of a potential acquisition by Qualcomm. Therefore you might be wondering, “Will the Librem 5 be affected by these bugs too?” and “will the Purism team get the i.MX 8 chips as planned?”, so let’s address those questions now.

Not affected by Spectre/Meltdown

At the moment we are pretty confident that we will be using one of NXP’s new i.MX 8 family of CPUs/SOCs for the Librem 5 phone. More specifically we are looking at the i.MX 8M which features four ARM Cortex A53 cores. According to ARM, these cores are not affected by the issues now known as Spectre or Meltdown, which ARM’s announcement summarizes in their security update bulletin.

So for the moment we are pretty sure that the Librem 5 phone will not be affected, however we will continue to keep an eye on the situation since more information about these bugs is surfacing regularly. In this respect we can also happily report that we have a new consultant assisting our team in security questions concerning hardware-aided security as well as questions like “is the phone’s CPU affected by Spectre/Meltdown or not”.

Qualcomm possibly buying NXP: not a concern

For quite some time there have been rumors that Qualcomm might have an interest in acquiring NXP. Since we will be using an NXP chip as the main CPU, specifically one of the i.MX 8 family, we are well aware of this development and are watching it closely.

Qualcomm is an industry leader for high volume consumer electronics whereas NXP targets lower volume industrial customers. This results in pretty different approaches concerning support, especially for free software. Where NXP traditionally is pretty open with specifications, Qualcomm is rather hard to get information from. This is very well reflected by the Linux kernel support for the respective chips. The question is how would it affect continued free software support and availability of information on NXP SOCs if Qualcomm acquires NXP?

First, it is unlikely that this deal will happen at all. Qualcomm had a pretty bad financial year in 2017 so they might not be in the financial position to buy another company. Second, there is a rumor that Broadcom might acquire Qualcomm first. Third, international monopoly control organizations are still investigating if they can allow such a merger at all. Just a few days ago the EU monopoly control agreed to allow the merge but with substantial constraints, for example Qualcomm would have to license several patents free of charge, etc. Finally, there are industry obligations that NXP cannot drop easily: the way NXP works with small and medium sized customers is a cornerstone of many products and customers; changing this would severely hamper all of those businesses involved, and these changes might cause bad reputation, bad marketing and loss of market share.

So all in all, this merger is not really likely to happen soon and there would probably not be changes for existing products like the i.MX 8 family. If the merger happens it might affect future/unreleased products.

Development outreach

In addition to working on obtaining i.MX6QuadPlus development boards to be able to work properly, the phone team is also intensively researching and evaluating software that we will base our development efforts on during the next few months. We are well aware of the huge amount of work ahead of us and the great responsibility that we have committed to. As part of this research, we reached out to the GNOME human interface design team with whom we began discussions on design as well as implementation. For example, we started to implement a proof of concept widget that would make it much easier to adapt existing desktop applications to a phone or even other style of user interface. What we would like to achieve is a convergence of devices so that a single application can adapt to the user interface it is currently being used with. This is still a long way ahead of us, but we are working on it now. We will meet up also with some GNOME team members at FOSDEM to discuss possible development and design goals as well as collaboration possibilities.

The mobile development work for KDE/Plasma will primarily be performed by their own human interface teams. Purism will be supporting their efforts through supplying hardware and documentation about our phone development progress as it is happening. This will help ensure that that KDE/Plasma will function properly on the Librem 5 right from the factory. To understand better where we’re headed with GNOME and KDE together, take a look at this blog post.

We also reviewed and evaluated compositing managers and desktop shells that we could use for a phone UI. We aim to use only Wayland, trying to get rid of as much X11 legacy as we possibly can, for performance issues and for better security. From our discussions with GNOME maintainers of existing compositors and shells, we may be better off igniting a new compositor (upstreamed and backed by GNOME) in order to avoid the X11 baggage.

On the application and middleware side of things, we have generated an impressive list of applications we could start to modify for the phone to reach the campaign goals and we have further narrowed down middleware stacks. We are still evaluating so I do not want to go into too much detail here, in order not set any expectation. We will of course talk about this in more detail in some later blog posts.

Meeting with Chip Makers

As the CPU choice is pretty clear lately, we are going to have a meeting with NXP and some other chip makers at Embedded World in Nürnberg, Germany, at the end of the month. This is very encouraging since we worked for months on getting a direct contact to NXP, which we now finally have and who we will meet in person at the conference. The search for design and manufacturing partners is taking longer than expected though. Our own hardware engineering team together with the software team, especially our low level and kernel engineers, started to create a hardware BOM (bill of material) and also a “floor plan” for a potential PCB (printed circuit board) layout, but it turns out that many manufacturers are reluctant to work with the i.MX 8M since it is a new CPU/SOC. We have, however, some promising leads and good contacts so we will work on that.

Purism Librem 5 team members attending FOSDEM

By the way, many Purism staff members will be at FOSDEM this week-end, on the 3rd and 4th of February. In addition to the design and marketing team, PureOS and Librem 5 team members will be there and we would love to get in touch with you! Purism representatives dedicated to answering your questions will be wearing this polo shirt so you can easily recognize them:

GNOME and KDE in PureOS: diversity across devices

PureOS, a Free Software Foundation endorsed GNU distribution, is what Purism pre-installs on all Librem laptops (in addition to it being freely available for the public to run on their own compatible hardware or virtual machines). It comes with a GNOME desktop environment by default, and of course, since we love free ethical software, users can use KDE that is also available within PureOS. This is the future we will continue to advance across all our devices: a PureOS GNOME-first strategy, with other Desktop Environments (DEs), such as KDE, available and supported by Purism.

At Purism we want a unified default desktop environment, and considering that we have chosen GNOME to be the default on laptops, we hope to extend GNOME to also be the default on phones. The ability for users to switch is also very powerful, and having a strong, usable, and supported alternative—that is, KDE/Plasma—for the Librem 5 offers the best of the “unified default” world and the “usable user choice” worlds.

Symbiotic GNOME and KDE partnerships

Purism has partnered with both GNOME and KDE for the Librem 5; what this means simply is that users running PureOS on their Librem 5 will get the choice of a GNOME environment or a KDE/Plasma environment, and the user could always switch between the two, like what is already the case on computers running PureOS. Will there be other partnerships in the future? We imagine so, since we will be happy to support any and all ethical OSes, GNU distributions, and want to make sure that the future is bright for a non-Android-non-iOS world.

While the initial GNOME and KDE partnerships mean uplifting diversity at the top level (and greater choice for users), each have a slightly different developmental and support roadmap. The reason for this is pragmatic, since KDE is very far along with their “Plasma” mobile desktop environment, while GNOME is farther behind currently. Investing time and efforts to advance the status of mobile GNOME/GTK+, aligns with our longer-term goals of a unified default desktop environment for PureOS, offering a convenient default for users. Diversity is why we are supporting and developing both GNOME/GTK+ and KDE/Plasma.

Therefore:

  • KDE: Purism is investing in hardware design, development kits, and supporting the KDE/Plasma community, and will be sharing all early documentation, hardware designs, and kernel development progress with the core KDE/Plasma developers and community.
  • GNOME: Purism is investing the same in hardware design, development kits, and supporting the GNOME/GTK+ community as we are with the KDE/Plasma community. In addition, Purism is needing to lead some of the development within the GNOME community, since there is not a large community around an upstream-first GNOME/GTK+ for mobile yet.

Choice is good, redundancy is good, but those are ideal when there is minimal additional investment required to accomplish technological parity. Since Purism uses GNOME as the default desktop environment within PureOS on our laptops, we figured we are going to invest some direct development efforts in GNOME/GTK+ for mobile to stay consistent across our default platforms. Adding KDE as a second desktop environment is directly aligned with our beliefs, and we are very excited to support KDE/Plasma on our Librem 5 phone as well as within PureOS for all our hardware. We will support additional efforts, if they align with our strict beliefs.

Why not just use KDE/Plasma and call it a day?

If we were doing short-term planning it would be easy to “just use Plasma” for the Librem 5, but that would undermine our long-term vision of having a consistent look/feel across all our devices, where GNOME/GTK+ is already the default and what we’ve invested in. Supporting both communities, while advancing GNOME/GTK+ on mobile to allow it to catch up, aligns perfectly with our short-term goals (offering Plasma on our Librem 5 hardware for early adopters who prefer this option), while meeting our long-term vision (offering a unified GNOME stack as our primary technological stack across all our hardware). It is also a good way to give back to a project that needs our help.

Why not just push GNOME and GTK+ and forward?

Because having an amazingly built Plasma offering available early to test and ship to users is a superb plan in many ways—not just for redundancy, but also because KDE/Plasma also aligns so well with our beliefs. The product readiness across these two desktop environments are so different it is not easy to compare side-by-side.

Empowering both communities is possible

Overall, Purism is investing the same amount across hardware, boot loader, kernel, drivers and UI/UX. These are shared resources. The deviation boils down to:

  • GTK+ and the GNOME “shell” development, that Purism is planning to be directly invested in, in close collaboration with upstream
  • Community support: by being involved in both communities, we are effectively doubling our efforts on supporting those communities, but that is a small cost for the greater benefit of users.

Supporting both KDE/Plasma and GNOME means we will continue to build, support, and release software that works well for users across Purism hardware and within PureOS. Purism fully acknowledges that each platform is in different release states, and will be working with each community in the areas required—be that software development, hardware development kits donated, community outreach, conference sponsorship, speaking engagements, and offering product for key personnel.

Librem 5 Phone Progress Report – A Design Team Assembles

We have spent the last two months building our design team for the Librem 5 Phone project. We have been studying the current state of mobile design within the free software community as well as large companies that have shown success in mobile. We have been in the planning phases of development attempting to produce an ethically designed device and now that we have a working prototype we have shifted to the process of designing User Interfaces (UI) and User eXperience (UX) for the Librem 5.

New members on the design team

Peter K’s Concept Art

Upon successful completion of our funding campaign, we started to look for a Designer to take care of the user experience for the Librem 5, and a web developer to help us improve the look & feel (and more technical parts) of our website in general. Today, I’m glad to finally welcome them publicly!

  • Our new UI & UX Designer is Peter Kolaković, who is very talented and had already gotten involved during the campaign by creating amazing concept art (that we ended up displaying on the campaign page and that became the basis for our potential look and feel of the Librem 5).
  • Our new Web Designer is Eugen Rochko, the web development wizard who already proved his skills by creating Mastodon.

We had a huge amount of talented and motivated applicants who were perfectly aligned with our philosophy of digital ethics, and so picking only two was a very difficult decision to make. Thank you to all of those who applied! We appreciate your interest, motivation, and ideas!

Unified look for PureOS devices

Peter has also been working on the look and feel of PureOS in an effort to make our systems convergent across devices: phone, tablet and laptop.

Our approach to convergence is that mobile is the motivating factor for all other platforms. We are aware that usability is different from a small touchscreen to a laptop monitor with a mouse and keyboard. We want to improve the user experience through ease of use, by creating a graphical environment that doesn’t require a steep learning curve when switching between devices. This approach is also helpful to developers who don’t want to maintain too many different outputs. Mobile design brings efficiency and simplicity first.

The general appearance of the user interface we’ll be designing is expected to follow current visual design approaches in the mobile industry. We expect our design to have a minimalistic aesthetic by default.

We are starting work on a dark theme (a “light” one will be designed as well). Here are a few mockups that we are working on (click to enlarge):

Community involvement approach

We want any of our Librem 5 UI/UX design and development work to be a direct contribution back to the parent projects that they are based on. You may be aware that we have partnered with both the KDE and GNOME projects, and so we wish to make the Librem 5 a mobile platform where the user can have a choice of Desktop Environments. Of course, KDE and GNOME are currently at fairly different levels of development with regards to mobile user experience:

KDE Mobile UI Example
  • KDE already has a beautiful and full-featured mobile interface (that our dev team is busy on making work on the Librem 5 hardware). Whatsmore, from a design standpoint, the KDE design team has done a great job developing a set of clean, touch driven user interfaces that make it a pleasant and functional mobile environment already; there is not much to add to KDE except for a graphical touch interface specific to PureOS. Purism’s contribution to KDE may be generally focused on hardware integration and testing, rather than design.
  • GNOME developers’ resources have not been focused on mobile user experience per se, so there is more work required to make GNOME production ready for a convergent Librem 5. In an effort to bring convergence across our devices which already run PureOS with GNOME, we are hoping to contribute design and software development efforts to the GNOME project. Our teams will develop and design the missing mobile components and improve the existing ones.

This is what free software is all about—not just taking existing work “as is” but adjusting and improving things that we send back for everyone to benefit from. We’re looking forward to giving development back to these two free software giants!

Conclusion

As I said in a previous post, we are working on producing an “ethical design” that:

  • Respects Human Rights by using free/libre technologies and contributing to them for the profit of everyone.
  • Respects Human Effort by unifying the user experience, making convergent designs based on a “Mobile First” approach that favors efficiency and simplicity.
  • Respects Human Experience by designing a modern, clean and efficient look for PureOS.